\qquad Exam Seat No: \qquad C.U.SHAH UNIVERSITY

Summer Examination-2022

Subject Name: Group Theory

Subject Code: 4SC05GRT1

Semester: 5

Date: 25/04/2022

Branch: B.Sc. (Mathematics)

Time: 11:00 To 02:00
Marks: 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:
\qquad .
a) For a group $\left(Z_{5},+_{5}\right)$ then $O(4)=$
(a) 1
(b) 2
(c) 4
(d) 5
b) Which of the following is not group ?
(a) $(N,+)$ (b) $(Q,+)$
(c) $(R,+)$
(d) $(Z,+)$
c) Let G be a group of order n, for any $a \in G \quad a^{n}=$ \qquad
(a)
(b) a^{2}
(c) e
(d)
a^{-1}
d) The number of generators in group $\left(Z_{6},+_{6}\right)$ is \qquad .
(a) 1
(b) 2
(c)
3
(d)
4
e) $\quad \sigma=(12453) \in S_{5}$ is an \qquad permutation.
(a) odd
(b) even (c) Identity
(d) transposition
f) The permutation $\left(\begin{array}{lllll}1 & 2 & 5 & 3 & 4 \\ 3 & 4 & 1 & 5 & 2\end{array}\right)$ is equal to
(a) $(13)(1$
(15)(24)
(b) (1) (2) (3)
(c) $(135)(56)$
(d) $(142)(53)$
g) Let G be a finite group of order m and H be a subgroup of G of order n then \qquad .
(a) m / n
(b) n / m
(c) $n=m$ always
(d) all
h) Which of the following is true?
(a) Every finite group is cyclic
(b) Every cyclic group is abelian
(c) Every abelian group is cyclic
(d) none of these
i) Every group of prime order is \qquad .
(i) cyclic (ii) abelian (iii) sub - group (iv) Normal group
j) $\left(Z_{4},+_{4}\right)$ is group then $2+_{4} 3=$ \qquad
$\left(Z_{4},+_{4}\right)$ is group then $2+_{4}$
(a) 1
(b) 2
(c) 3
(d) 4
k) If $\mu=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)$ then $O(\mu)=$ \qquad .
(a) 1
(b) 2
(c)
3
(d) 6
l) A cycle of length two is called
(a) remainder (b) transposition
(c) disjoint cycle (d) None
m) If H_{1} and H_{2} are two subgroups of G, then which following is also a subgroup of
G.
(a) $H_{1} \cap H_{2}$
(b) $H_{1} \cup H_{2}$
(c) $\mathrm{H}_{1} \mathrm{H}_{2}$
(d) None
n) If $G=\{1,-1, i,-i\}$ is a multiplicative group then order of $-i$ is \qquad .
(a)
1
(b) 2
(c)
3
(d) 4

Attempt any four questions from $\mathbf{Q}-2$ to $\mathbf{Q - 8}$

Attempt all questions
a) Let $G=(\mathbb{R},+)$ and $G^{\prime}=\left(\mathbb{R}_{+}, \cdot\right)$, Let $f: G \rightarrow G^{\prime}$ be defined as
$f(x)=e^{x}, \forall x \in G$ then prove that f is an isomorphism between G and G^{\prime}.
b) Suppose $\left(G,{ }^{\circ}\right) \cong\left(G^{\prime}, *\right)$. Then prove that if G is commutative then G^{\prime} is commutative
c) Let $G=\{1,-1, i,-i\}$ and $H=\{1,-1\}$ then show that H is normal subgroup of G Attempt all questions
a) State and prove Caley's theorem
b) State and prove Langrange's theorem

