Enrollment No: _____ Exam Seat No: _____ C.U.SHAH UNIVERSITY **Summer Examination-2022**

Subject Name: Group Theory

	Subject (Code: 4SC05GRT1	Branch: B.Sc. (Mathemati	cs)
	Semester	r: 5 Date: 25/04/2022	Time: 11:00 To 02:00	Marks: 70
	Instructio (1) U (2) I (3) I (4) A	ons: Use of Programmable calculator & a instructions written on main answer Draw neat diagrams and figures (if r Assume suitable data if needed.	any other electronic instrument is pr book are strictly to be obeyed. necessary) at right places.	ohibited.
Q-1	a)	Attempt the following questions For a group $(Z_5, +_5)$ then $O(4) =$: =	(14) (01)
	b)	(a) 1 (b) 2 (c) 4 Which of the following is not grou (a) $(N +)$ (b) $(O +)$ (c)	(d) 5 p? (R+) (d) $(Z+)$	(01)
	c)	Let G be a group of order n, for a (a) a (b) a^2 (c) e	$any \ a \in G \qquad a^n = \underline{\qquad}$ (d) a^{-1}	(01
	d)	The number of generators in group (a) 1 (b) 2 (c)	$(Z_6, +_6)$ is 3 (d) 4	(01)
	e)	$\sigma = (1 \ 2 \ 4 \ 5 \ 3) \in S_5 \text{ is an} ____$ (a) odd (b) even	permutation. (c) Identity (d) transpositio	(01 n
	t)	The permutation $\begin{pmatrix} 1 & 2 & 5 & 3 \\ 3 & 4 & 1 & 5 \\ (a) & (1 3)(1 5)(2 4) & (b) & (1)(2) & (3 - 2) \\ \end{pmatrix}$	$\binom{4}{2}$ is equal to 3) (c) $(135)(56)$ (d) $(142)(5)$	(01)
	g)	Let <i>G</i> be a finite group of order <i>m</i> then	and H be a subgroup of G of order	n (01
	h)	 (a) m/n (b) n/m (c) Which of the following is true? (a) Every finite group is cyclic 	n = m always (d) all(b) Every cyclic group is abeli	(01
	i)	 (c) Every abelian group is cyclic Every group of prime order is (i) cyclic (ii) abelian (iii) sub- 	(d) none of these	(01
	j)	(1) cyclic (1) abenan (11) sub- ($Z_4, +_4$) is group then 2 + ₄ 3 =_ (a) 1 (b) 2 (c) 3		(01)
	k)	If $\mu = (1 \ 2 \ 3)(4 \ 5)$ then $O(\mu) =$ (a) 1 (b) 2 (c) 3	(d) 6	(01
	l)	A cycle of length two is called (a) remainder (b) transposition ((c) disjoint cycle (d) None	(01)
	m)	If H_1 and H_2 are two subgroups of P	If G , then which following is also a straight 1 3	ubgroup of (01)

		G. (a) $H_1 \cap H_2$ (b) $H_1 \cup H_2$ (c) $H_1 H_2$ (d) None	
	n)	If $G = \{1, -1, i, -i\}$ is a multiplicative group then order of $-i$ is (a) 1 (b) 2 (c) 3 (d) 4	(01)
Attempt	any f	Cour questions from Q-2 to Q-8	
Q-2	a)	Attempt all questions Show that the set of all Integers form a group under the binary operation defined by as $a * b = a + b + 1$. $\forall a, b \in Z$	(14) (05)
	b)	Prove that for any group $(G,*)$ (i) the Identity element in $(G,*)$ is unique (ii) the inverse element in $(G,*)$ is unique	(05)
	c)	Show that for group (<i>G</i> ,*) (i) $(a * b * c)^{-1} = c^{-1} * b^{-1} * a^{-1} \forall a, b, c \in G$	(04)
Q-3	a)	Attempt all questions If H_1 and H_2 are two subgroups of group <i>G</i> then prove that $H_1 \cap H_2$ also subgroup of <i>G</i>	(14) (05)
	b)	Let G be a Group and let $a \in G$ then Prove that $N(a) = \{x \in G xa = ax\}$ is a	(05)
	c)	subgroup of G Let (<i>G</i> ,*) is group and <i>a</i> , <i>b</i> \in <i>G</i> then the linear equation <i>a</i> * <i>x</i> = <i>b</i> has unique solution in <i>G</i>	(04)
Q-4	a)	Attempt all questions For $\sigma, \mu \in S_5$ where $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 2 & 4 \end{pmatrix}$ and $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ then show that	(14) (05)
	b)	$(\sigma\mu)^{-1} = \mu^{-1}\sigma^{-1}$ Let <i>G</i> be a group and for $a \neq e$, $a^2 = e \forall a \in G$ then show that <i>G</i> is abelian group	(05)
	c)	Show that $\sigma_1 = \begin{pmatrix} 1234\\2134 \end{pmatrix}$ and $\sigma_2 = \begin{pmatrix} 1234\\1243 \end{pmatrix}$ are commute with each other	(04)
Q-5	a)	Attempt all questions Let <i>G</i> be a group and <i>H</i> be a subgroup of <i>G</i> then prove that $Ha = Hb \Leftrightarrow ab^{-1} \in H$	(14) (05)
	b)	Suppose $o(a) = n$ for an element a in a group G . Then prove that (i) $o(a^p) \le o(a), p \in Z$	(05)
	c)	(ii) $o(a^{-1}) = o(a)$ (iii) For a positive integer q with $(q, n) = 1$ then prove that $o(a^q) = o(a)$. Let H be a subgroup of G and $a, b \in G$ then show that $a \in H \Leftrightarrow H = Ha$	(04)
Q-6	a) b) c)	Attempt all questions Show that the set $\{1, -1, i, -i\}$ is cyclic group with respect to multiplication Prove that every cyclic group is an abelian but converse is not true Find the order of each elements in cyclic group $(Z_8, +)$ and also find all generators of z_8 .	(14) (05) (05) (04)
Q-7	a)	Attempt all questions Let $G = (\mathbb{R}, +)$ and $G' = (\mathbb{R}_+, \cdot)$, Let $f : G \to G'$ be defined as $f(x) = e^x$, $\forall x \in G$ then prove that f is an isomorphism between G and G' .	(14) (05)

Page 2 || 3

b)	Suppose $(G, \circ) \cong (G', *)$. Then prove that if G is commutative then G' is	(05)
	commutative	
c)	Let $G = \{1, -1, i, -i\}$ and $H = \{1, -1\}$ then show that H is normal subgroup of	(04)
	G	
	Attempt all questions	(14)
a)	State and prove Caley's theorem	(07)
b)	State and prove Langrange's theorem	(07)

Q-8

